

Voitist 611 (VOI611)

Embedded Deep Learning Speech Recognition Chip

(V 1.50)

2019-10-30

Copyright © Beijing Intengine Technology Co., Ltd. 2019. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Beijing Intengine Technology Co., Ltd.

Trademarks and Permissions

Intengine Technology and other Intengine icons are trademarks of Beijing Intengine Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Beijing Intengine Technology Co., Ltd. and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Beijing Intengine Technology Co., Ltd.

Address:Room 1503, BoTai Building, Hongtai West Street, Wangjing,Chaoyang District, Beijing 100102 P.R. ChinaWebsite:http://www.intenginetech.cn/index.htm

Table of Contents

1.	General Introduction
2.	Chip Architecture 2
3.	Feature List
3.1.	ASR Performance
3.2.	MCU
3.3.	NPU4
3.4.	Firmware Storage4
3.5.	Peripheral Interface 4
3.6.	Debug Interface4
3.7.	Timer Resource5
3.8.	Audio ADC Characteristics
3.9.	Clock & Power5
4.	Pin Map 6
4.1.	Pin Map Figure6
4.2.	Power and Ground Pins7
4.3.	Audio Interface Signals8
4.4.	Control Interface Signals9
4.5.	System Function Signals10
5.	Typical Application11
6.	Electronic Specification12
7.	Package Information13

Ι

1

1. General Introduction

Voitist 611 (abbreviate as VOI611) is an automatic speech recognition (ASR) chip for embedded products based on local deep learning inference. It

integrates one self-developed neural processing unit (NPU), one ARM Cortex-M3 processor, on-chip memory, and various peripheral interfaces.

VOI611 can efficiently accelerate various neural networks inference to quickly recognize many voice

key words offline both in near field and far field, even in a noisy environment.

With VOI611, users can easily control target equipment without the Internet connection by issuing simple voice commands.

This IC can be applicate to Smart Home, Smart Vehicle, Intelligent Sound Box and Man-machine interactive product. It has excellent performance, high flexibility and low power consumption.

Copyright © Beijing Intengine Technology Co., Ltd.

2. Chip Architecture

VOI611 is an automatic speech recognition (ASR) chip for embedded products based on local deep learning inference. The highlights of the chip include following features:

- Self-developed neural process unit (NPU) that enables chipset to run deep learning model locally
- Powerful ARM 32bit Cortex-M3 processor
- QSPI interface for external Flash connection
- Audio interfaces:

I2S, PDM input, analog microphone input, analog audio output

• Peripheral interfaces:

PWM output, I2C, UART, SPI, GPIO

- JTAG debug interface
- On-chip PLL, timer and watch dog

Figure 2-1 VOI611 Chip Block Diagram

3. Feature List

3.1. ASR Performance

• Interactive Steps:

Wake up Word Input → Response → Command Speech Input →

Recognition → Feedback (TTS output and circuit action)

- Key words support: up to 200 voice key words, 3~6 syllable for each key word
- Feedback speed: < 0.1s (time from speech input done to output feedback)
- Recognition ratio: > 98% under 60dB environment noise
- Speech Q&A support: up to 5 layer
- Support Languages: mandarin Chinese and English
- Operating Range: >5m
- Speech Input: Support analog and digital microphone, support far field recognition, noise suppression and sound source localization
- Feedback mode: TTS output and execution circuit control
- TTS output: TTS content customizable
- Development support:
 - Support customer secondary development
 - Providing customized development services

3.2. MCU

- Powerful ARM 32bit Cortex-M3 processor
- Clock speed up to 131 MHz
- 512KB on chip memory

3.3. NPU

- The NPU base Intengine Technology owned Storage First Architecture (SFA) include following features:
 - Support all popular speech neural network topologies
 - High efficiency of local reasoning

3.4. Firmware Storage

- External QSPI Flash is used as the firmware storage
- Min. flash memory size request 4MB

3.5. Peripheral Interface

- I2S digital audio I/F: 1 port input & 1 port output, Master or Slave mode,
- PDM digital audio input interface: 1 port (L/R)
- Analog Mic input: 1 port (L / R)
- Analog audio output: 1 port (L/R)
- PWM output: 4 ports
- I2C I/F: 1 port, Master mode
- UART I/F: 2 ports, support max. Bps to 115200
- SPI I/F: 1 port, Master mode, with 65.5MHz clock
- QSPI I/F:1 port, for SPI Flash connection
- GPIO: 16 pins, multiplexed with other pins

3.6. Debug Interface

Both JTAG and UART are supported for software debug

3.7. Timer Resource

- Timer: 3
- Watch Dog Timer: 1

3.8. Audio ADC Characteristics

- High Resolution Stereo Sigma-Delta audio ADC
- ADC inside PGA with Max. gain 27dB
- Full-Amplitude Input Voltage: 2.1Vp-p

3.9. Clock & Power

- Clock:
 - On-chip PLL
 - On-chip oscillator with external 24.576 MHz crystal
- Power Voltage:
 - Operating Voltages: 3.3V
 - Core Voltages: 1.2V
- Power Consumption:
 - Sleep mode: <15mW
 - Recognition mode: 100~150mW

VOI611 DATASHEET

4. Pin Map

4.1. Pin Map Figure

6

4.2. Power and Ground Pins

Pin Number	Signal	Туре	Description
1,18,27,34,35, 42,52,58,68	DVDD12	DP	1.2V digital power for core
10,15	AVDD12	AP	1.2V analog power for PLL
16,25,37,59	DVDD33	DP	3.3V digital power for IO
12	AVDD33_PLL	AP	3.3V analog power for PLL
7	AVDD33_ADC	AP	3.3V analog power for ADC
2 ADC_VREFH AI ADC reference volt ceramic capacitor this pin to AVSS_A		ADC reference voltage; A 10uF in parallel with a 0.1uF ceramic capacitor attached from this pin to AVSS_ADC	
3	ADC_VREFL	AI	ADC reference voltage; A 10uF in parallel with a 0.1uF ceramic capacitor attached from this pin to AVSS_ADC
5	ADC_VCOM	AO	Common voltage reference output; A 4.7uF in parallel with a 0.1uF ceramic capacitor attached from this pin to AVSS_ADC; The output voltage is 1.65V
6	ADC_MIBIAS	AO	Electrets Microphone Bias, the output voltage is 1.6~2.8V, output load capacitor no less than 4.7uF
48	AVDD33_DAC	AP	3.3V analog power for DAC
46	DAC_VREF	AO	DAC internal reference voltage; A 10uF in parallel with a 0.1uF ceramic capacitor attached from this pin to AVSS_DAC
50	AVDD33_HPL	AP	3.3V analog power for left channel of speaker
44	AVDD33_HPR	AP	3.3V analog power for right channel of speaker
26,36,53,67, EPAD	DVSS	DG	Digital ground
11	AVSS_PLL	AG	Analog ground for PLL
8	AVSS_ADC	AG	Analog ground for ADC
47	AVSS_DAC	AG	Analog ground for DAC
51	AVSS_HPL	AG	Analog ground for left channel of speaker
43	AVSS_HPR	AG	Analog ground for right channel of speaker

4.3. Audio Interface Signals

Pin Number	Signal	Туре	Description		
4	ADC_MICR	AI	ADC input (right channel of microphone)		
9	ADC_MICL	AI	ADC input (left channel of microphone)		
40	PDM_CLK	I	PDM clock; Pull-down inside chip		
19	GPIOC2	ю	GPIOC2; Pull-down inside chip		
	I2S_SDI	I	I2S data input; Pull-down inside chip		
20	PDM_DATA	I	PDM data input; Pull-down inside chip		
	GPIOD2	ю	GPIOD2; Pull-down inside chip		
21	I2S_SDO	0	I2S data output; Pull-down inside chip		
22	I2S_WS	0	I2S channel select; Pull-d <mark>own in</mark> side chip		
23	I2S_SCLK	0	I2S serial clock; Pull-down inside chip		
24	I2S_MCLK	0	I2S system clock; Pull-down inside chip		
45	DAC_HPR	AO	DAC data output (right channel of speaker)		
49	DAC_HPL	AO	DAC data output (left channel of speaker)		

8

4.4. Control Interface Signals

Pin Number	Signal	Туре	Description	
28	QSPI_CSN	ο	QSPI mode select; Pull-up inside chip	
29	QSPI_IO1	ю	QSPI data1; Pull-down inside chip	
30	QSPI_IO2	ю	QSPI data2; Pull-down inside chip	
31	QSPI_IO0	ю	QSPI data0; Pull-down inside chip	
32	QSPI_SCLK	0	QSPI clock; Pull-down inside chip	
33	QSPI_IO3	ю	QSPI data3; Pull-down inside chip	
38	MSPI_SCLK	ο	Master SPI clock; Pull-down inside chip	
	GPIOA3	ю	GPIOA3; Pull-down inside chip	
39	MSPI_SDO	0	Master SPI data output; Pull-down inside chip	
	GPIOC3	ю	GPIOC3; Pull-down inside chip	
40	MSPI_SDI		Master SPI data input; Pull-down inside chip	
	GPIOD3	ю	GPIOD3; Pull-down inside chip	
41	MSPI_CSN	0	Master SPI mode select; Pull-up inside chip	
	GPIOB3	ю	GPIOB3; Pull-up inside chip	
E A	UART1_RX	I	UART1 input; Pull-up inside chip	
54	GPIOD1	ю	GPIOD1; Pull-up inside chip	
EE	UART1_TX	0	UART1 output; Pull-up inside chip	
55	GPIOC1	ю	GPIOC1; Pull-up inside chip	
EC	UART0_TX	0	UART0 output; Pull-up inside chip	
50	GPIOA1	ю	GPIOA1; Pull-up inside chip	
57	UART0_RX	I	UART0 input; Pull-up inside chip	
51	GPIOB1	ю	GPIOB1; Pull-up inside chip	
E A	MI2C_SDA	ю	I2C data; Pull-up inside chip	
04	GPIOB2	ю	GPIOB2; Pull-up inside chip	
CE.	MI2C_SCL	0	I2C clock; Pull-up inside chip	
60	GPIOA2	ю	GPIOA2; Pull-up inside chip	

4.5. System Function Signals

Pin Number	Signal	Туре	Description		
13	XIN	I	Input for crystal connection		
14	XOUT	0	Output for crystal connection		
17	PROB	I	System reset (Active low); Pull-up inside chip		
	JTAG_TDO	0	JTAG data output; Pull-down inside chip		
60	PWM3	AO	PWM3 output; Pull-down inside chip		
	GPIOD0	ю	GPIOD0; Pull-down inside chip		
	JTAG_TDI	I	JTAG data input; Pull-down inside chip		
61	PWM2	AO	PWM2 output; Pull-down inside chip		
	GPIOC0	ю	GPIOC0; Pull-down inside chip		
	JTAG_TMS	I	JTAG mode select; Pull-down inside chip		
62	PWM1	AO	PWM1 output; Pull-down inside chip		
	GPIOB0	ю	GPIOB0; Pull-down inside chip		
	JTAG_TCK		JTAG clock; Pull-down inside chip		
63	PWM0	AO	PWM0 output; Pull-down inside chip		
	GPIOA0	10	GPIOA0; Pull-down inside chip		
66	TEST_MODE	I	Test usage (usually connect GND); Pull-down inside chip		

5. Typical Application

6. Electronic Specification

The electronic specification with recommended operating conditions as below table:

Parameters	Symbol	Min	Тур	Мах	Units		
Core Power Supply Voltage		1.14	1.2	1.26	v		
Core Power Supply Current			80		mA		
1.2V Analog Power Supply Voltage	AVDD12	1.14	1.2	1.26	v		
Digital I/O Power Supply Voltage	DVDD33	3.0	3.3	3.6	v		
3.3V PLL Power Supply Voltage	AVDD33_PLL	3.14	3.3	3.46	v		
3.3V ADC Power Supply Voltage	AVDD33_ADC	3.14	3.3	3.46	v		
3.3V DAC Power Supply Voltage	AVDD33_DAC	3.14	3.3	3.46	V		
3.3V HPL Power Supply Voltage	AVDD33_HPL	3.14	3.3	3.46	V		
3.3V HPR Power Supply Voltage	AVDD33_HPR	3.14	3.3	3.46	v		
SPI Clock frequency	SPI Clock	0.002		65.536	MHz		
Operating Ambient Temperature	Tamb	-25		85	ĉ		
Storage Temperature	Tstg	-55		125	ĉ		
Moisture Sensitivity Level	MSL		3		Level		
Electro-Static Discharge	ESD		2000		v		

7. Package Information

Package Specification (Unit: mm): QFN68-8x8x0.85

RoHS package

